ESSENTIAL OIL OF Ferula ferulaoides FROM WESTERN MONGOLIA

S. Shatar UDC 547.913

The genus *Ferula* (Apiaceae) is represented by seven species in the flora of Mongolia. Of these, two are endemic [1, 2].

Ferula ferulaoides Korov. was collected on September 14, 2001, in the western part of the Mongolian Altai. A sample of the plant was placed in the herbarium of the Biology Department of Mongolia State University in Ulan-Bator.

Ground and air-dried roots of *F. ferulaoides* were steam distilled for 3 h in a Clevenger apparatus [3]. The yield of essential oil was 2.4-3.2% (calculated for dry roots).

Essential oil was analyzed by mass spectrometry in a Finnigan Ion Trap (ITD) model 800 attached directly to a Varian 6500 gas chromatograph (WDB-5, capillary column, inlet temperature 222°C, detector temperature 240°C, temperature gradient 60-240°C/3°C per min). Compounds were identified using a database library [4]. Table 1 lists the results.

The essential oil contained 42 identified components representing 98.5% of the total oil. Guaiol (58.76%), (*E*)-nerolidol (10.16%), and α -eudesmol (3.05%) were the main components.

TABLE 1. Composition of Essential Oil of Ferula ferulaoides Korov. from Western Mongolia

KI*	Component	%	KI	Compound	%
939	α-Pinene	0.28	1372	α-Ylangene	0.15
952	Camphene	0.42	1378	α-Copaene	0.10
980	β -Pinene	0.64	1393	eta-Elemene	0.22
991	Myrcene	0.32	1418	β-Caryophyllene	0.23
1005	lpha-Phellandrene	1.04	1439	lpha-Guaiene	0.20
1026	<i>p</i> -Cymene	0.60	1455	lpha-Humulene	0.10
1031	Limonene	2.85	1458	β -Farnesene	3.02
1031	eta-Phellandrene	0.05	1477	γ-Muurolene	0.45
1033	1,8-Cineol	0.12	1480	γ-Curcumene	0.55
1062	γ-Terpinene	1.40	1494	lpha-Selinene	0.76
1088	Terpinolene	0.12	1509	β -Bisabolene	1.37
	Monoterpene hydrocarbons	7.84	1520	Myristicin	1.74
1102	lpha-Thujone	0.09	1524	δ -Cadinene	0.24
1114	eta-Thujone	0.41		Sesquiterpene hydrocarbons	7.39
1141	Camphor	0.87	1534	(E)-Nerolidol	10.16
1165	Borneol	0.98	1542	lpha-Calacorene	0.20
1177	Terpin-4-ol	0.10	1595	Guaiol	58.76
1184	<i>p</i> -Cymen-8-ol	0.25	1649	eta-Eudesmol	0.85
1189	α-Terpineol	0.20	1652	α -Eudesmol	3.05
1220	Fenchylacetate (endo)	1.17	1658	7-Epi- α -eudesmol	0.61
1284	Bornylacetate	1.51	1635	α-Cadinol	2.07
1350	α-Terpenylacetate	0.12	1671	β -Bisabolol	0.13
	O-Containing monoterpenes	5.70		O-Containing sesquiterpenoids	<i>77.</i> 57

^{*}KI = Kovach Index.

Institute of Chemistry and Chemical Engineering, Mongolian Academy of Sciences, Ulan-Bator-51, Mongolia. Translated from Khimiya Prirodnykh Soedinenii, No. 5, p. 497, September-October, 2005. Original article submitted April 27, 2005.

ACKNOWLEDGMENT

 $We thank \, Dr. \, Robert \, P. \, Adams \, (Biology \, Department, \, Baylor \, University, \, Waco, \, TX, \, USA) \, for \, performing \, the \, GC-MS \, analysis.$

REFERENCES

- 1. I. A. Gubanov, in: *Compendium of Flora of Inner Mongolia (Vascular Plants)* [in Russian], R. V. Kamelin, ed., Moscow (1996), p. 79.
- 2. V. Sh. Grubov, Key to Mongolian Vascular Plants [in Russian], Leningrad (1982), p. 192.
- 3. H. F. Linsking and J. E. Jackson, eds., *Modern Methods of Plant Analysis Oils and Waxes*, Springer Verlag, Berlin (1991).
- 4. R. P. Adams, *Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy*, Allured Publishing Co., Carol Stream, Illinois, USA (1995).